
Dynamic Spatial Reasoning Capability in a Graphical Interface Evaluation Tool

Michael Matessa (mmatessa@alionscience.com)
Rick Archer (rarcher@alionscience.com)
Rebecca Mui (rmui@alionscience.com)

Alion Science and Technology
Micro Analysis & Design Operation

1789 South Braddock Avenue, Suite 400
Pittsburgh, PA 15218 USA

Abstract

This paper describes dynamic and spatial reasoning
enhancements to the Graph-Based Interface Language tool
(GRBIL), which creates ACT-R models by demonstration. A
new ability for users to create monitors enables procedures to
be dynamically triggered. A new integration of ACT-R with a
diagrammatic reasoning theory allows ACT-R to perform
spatial reasoning. Capabilities of the tool are demonstrated in
a robotic control task.

Introduction
Cognitive modeling can add value to interface evaluation,
but it is currently not very practical in terms of amount of
expertise and time. Recent efforts to allow easier
construction of cognitive models have utilized high level
languages (Howes, Lewis, Vera, & Richardson, 2005;
Salvucci & Lee, 2003; St. Amant & Ritter, 2005) and
modeling by demonstration (Archer, Lebiere, & Warwick,
2005; John, Prevas, Salvucci, & Koedinger, 2004).
Modeling by demonstration is an easy way to create a
sequence of procedural steps, but with dynamic interfaces,
an additional method is needed to designate the condition in
which the procedure should be applied. In addition, many
real-world tasks require aspects of spatial reasoning as well
as dynamic interaction. Examples of interfaces with these
features include radar operator interfaces and interfaces for
controlling robotic vehicles. This paper describes dynamic
and spatial reasoning enhancements to the GRaph-Based
Interface Language tool (GRBIL – Archer, Lebiere, &
Warwick, 2005), which creates ACT-R models by
demonstration. A new ability for users to create monitors
enables procedures to be dynamically triggered. A new
integration of ACT-R with a diagrammatic reasoning theory
allows ACT-R to perform spatial reasoning.

ACT-R
The ACT-R cognitive architecture has shown an increasing
ability to account for human visual information processing.
Early ACT-R accounts of visual processing made a
distinction between pre-attentive features available to vision
and objects available after a shift of attention (Anderson,
Matessa, & Lebiere, 1997). More recent work uses brain
imaging as evidence for an Imaginal module where
information can be visualized and manipulated (Anderson et

al., 2004). However, current ACT-R theory is limited in the
visual objects that can be recognized (text, lines, rectangles,
and ovals) and does not provide primitive operators for
getting attribute information such as length, relational
information such as what objects are inside or next to other
objects, inferred information such as projected intersections,
and transformations on objects such as rotation. One
solution to these limitations is to integrate a spatial
reasoning theory into ACT-R. For interface evaluation,
diagrams are a useful level of representation for reasoning.
Larkin and Simon (1987) point out that diagrams
automatically support a large number of perceptual
inferences which are extremely easy for humans but that
“...diagrams are useful only to those who know the
appropriate computational processes for taking advantage of
them.”

DRS
Chandrasekaran et al. (2004) developed the diagrammatic
reasoning theory DRS, which consists of a basic set of
primitive objects, information gathering capabilities called
Perceptual Routines, and creation/modification operations
called Action Routines. A diagrammatic object can be one
of three types: point, curve, and region. Figure 1 shows
examples of object types and how they can be composed
hierarchically. Perceptual Routines can be qualitative (e.g.,
LeftOf, On, InsideOf), quantitative (e.g., Distance, Angle,
Length), or related to object recognition (e.g., ScanPath,
Intersect). Action Routines can create or modify objects
(e.g., Translate, Rotate, PathFinder).

Figure 1: DRS object types

Figure 2: DRS routines in the ACT-R architecture

Chandrasekaran and Kurup (2007) incorporated DRS into
Soar and used its chunking mechanism to learn efficient
abstractions of observed visual material. The abstractions
led to beneficial simplification in the case of memory of a
specific path in a complex environment, and also led to
incorrect but psychologically realistic reasoning in the case
of determining whether Reno is east or west of San Diego
(it is actually west). Lathrop and Laird (2006) incorporated
a diagrammatic reasoning theory motivated by DRS into the
Soar cognitive architecture and found an increase in
functional capability and increase in efficiency of code as
measured by number of decision cycles.

Combining DRS and ACT-R
Matessa and Brockett (2007) describe how the perceptual
capabilities of ACT-R can be enhanced by the addition of
DRS. Figure 2 shows where DRS routine types can
naturally fit in the ACT-R architecture. One unnatural fit
would be for qualitative routines to put all relational
information (e.g., Region4 is above Region5) in the
declarative module, which would cause a combinatorial
explosion of facts. More naturally, qualitative routines can
constrain locations returned by the visual module. For
example, DRS could return the location of some object
InsideOf a particular object. Quantitative routines can
associate information with visual objects returned by the
visual module. For example, DRS could associate the
Length of a line with the returned visual object. Object
recognition routines can return objects that are either
literally in the display or implied by the display. For
example, DRS could infer the projected line from a
specified object to the nearest Intersecting object and return
it to the imaginal module. Action routines can create or
modify objects stored in the imaginal module. For example,
DRS could Rotate an object in the imaginal module 45
degrees clockwise. To demonstrate these concepts, a model
of maze navigation was created where the decision to move
ahead or turn was based on the length of a projected line to
the nearest intersecting wall. Without the integrated DRS,
an ACT-R model would be forced to do maze navigation
using mental arithmetic on coordinates instead of using
more natural representations of intersection and line length.

In order to use DRS-enhanced ACT-R models to evaluate
dynamic interfaces, the code from Matessa and Brockett
(2007) was integrated into the GRBIL evaluation tool.

GRBIL
The goal of developing the GRaph-Based Interface
Language tool (GRBIL) is to allow developers to easily
design and evaluate system interfaces. The system allows
the user to graphically define a system interface,
demonstrate a set of procedures for using the interface, and
automatically generate an ACT-R model of an interface
operator, providing a time-stamped series of events and
potential errors. In addition, the system allows the
incorporation of dynamic models of the external world
using a task network modeling environment named
IMPRINT (IMProved Research INTegration Tool – Archer
& Adkins, 1999). This enables the evaluation of interfaces
that involve continually changing environments. Multiple
IMPRINT tasks can run independently, and with multiple
machines, multiple ACT-R agents can interact with
IMPRINT in a common environment.

 The first step in constructing an interface in GRBIL is to
design the physical layout of the interface. This involves
choosing the windows, subwindows, and interface controls
that comprise the interface. This is done in a similar fashion
to many modern interface layout applications using
WYSIWYG drag and drop functionality. Once a control is
added to a window, attributes such as size and background
image may then be customized further from a menu. The
second step in designing an interface is to provide a
description of what actions each control will be capable of
and what the desired effect of each action will be. This is
done for each control in GRBIL via an “Event Actions”
menu for each control. Using this process of adding
interface windows, placing controls on those interfaces and
then describing the effects of using those controls on the
state of the interface, a GRBIL user can describe the
functionality of an entire user interface.

Production System

Imaginal Module Manual Module

Intentional Module Declarative Module

Visual Module
Location Object

Visual Module
Location ObjectLocation Object

External World

Qualitative
(InsideOf)

Quantitative
(Length)

Object Recognition
(Intersection)

Action Routine
(Rotate)

Location of
feature

Object at
location

Visualize
object not

present

Figure 3: GRBIL monitor used to define a condition of procedure execution

The next step in setting up an interface for evaluation is to
define the procedures that a user of the system might wish
to perform. This is accomplished by demonstrating a series
of actions (e.g., button clicks, object movement). The
recorded series of actions is referred to as a “goal state”
procedure in the GRBIL terminology. Any number of goal
state procedures can be demonstrated and saved for later
execution by an ACT-R model. In the model, action steps
are represented as a list that is retrieved from declarative
memory, and so can be used to predict errors that are
dependent on sequence length and positional confusion (cf.
Anderson & Matessa, 1997; Matessa & Polson, 2006).
Model tracing is used so that potential errors are only noted
in the output while the correct retrievals are actually made
so the model runs correctly.

Once goal state procedures are defined, monitors can be
created that designate the condition in which the procedure
should apply. There are two types of monitors: object
monitors that check the status of an interface object and
spatial monitors that use DRS to check the status of
graphical objects. Figure 3 shows the interface used to
create monitors. A monitor control is either the name of an
interface object, name of a graphical object or names o
multiple graphical-objects. An attribute to monitor is an
attribute of an interface object defined in GRBIL or a DRS
routine for a graphical object. An attribute trigger value
must match the value of an attribute before the given goal
state procedure can be executed. Any number of monitors
can be demonstrated and saved for later execution by an
ACT-R model

At run time, goal state procedures and monitors are
chosen and ordered. An ACT-R model is created that
performs executes the procedures in the given order. The
action steps of a goal state procedure are performed without
interruption. Between goal state procedures, the model
evaluates the next unmatched monitor, using necessary
shifts of attention. If the monitor matches, the goal state
procedure for that monitor is executed.

Output from the model run includes a time-stamped series
of events and possible memory errors (failures to retrieve or
the retrieval of similar but incorrect chunks).

Robotic Interface Test Case
In order to test the capabilities of ACT-R models generated
with GRBIL, an interface for an unmanned vehicle Operator
Control Unit (OCU) was selected (Figure 4). The OCU is
used by operators to control unmanned vehicles in the field.
Operators set up plans for the vehicles which are then
executed independently. Operators are also responsible for
monitoring the status of the vehicles. The interface for the
OCU is quite complex, with several modes of operation and
control menus. In our implementation, ACT-R performed
the actions of operator agents and IMPRINT performed the
actions of unmanned vehicle agents. Multiple IMPRINT
vehicle agents can run independently, and with multiple
machines, multiple ACT-R operator agents can interact with
the IMPRINT vehicle agents in a common environment.
The ACT-R operators are able to monitor specific attribute
values in the environment (such as text describing the status
of a vehicle) and use DRS spatial reasoning to detect more
general conditions such as projected vehicle intersection
(Figure 5). For a particular set of procedures, interacting
models of multiple operators (one setting up and initiating
vehicles, one monitoring) predict improved performance
over a model of a single operator. This is a result of the
ability of the purely monitoring operator to react at the same
time the single operator would be busy with a procedure.

In order to validate the model’s predictions of errors,
latencies, and other performance measures, the project team
has begun to collect performance data from human
operators performing interface tasks such as mission
planning and execution on the actual Robotic OCU.
Fleetwood et al. (2006) report that timing predictions of
tasks not involving spatial reasoning generally match
preliminary data.

Figure 4: GRBIL tool viewing the Operator Control Unit interface

Related Work
Tools that enable modeling by demonstration, such as
CogTool (John et al., 2004), solve some affordability
problems. However, they offer no standard solution for
spatial reasoning or integration with dynamic environments.
As of this writing, visual processing in CogTool is limited
to scripted attention movement to interface objects. The
environment can not be monitored to detect a change.
CogTool simulates the environment with a storyboard of
static frames and transitions between these frames triggered
by user actions, not a dynamic environment. Under some
circumstances, CogTool storyboards could be combined
with dynamic simulations (e.g., driving) with some hand-
coded modifications.

In addition, CogTool currently produces Keystroke-Level
Models (Card, Moran, & Newell, 1983) implemented in
ACT-R, while GRBL produces more direct ACT-R code.
An example of this difference is that CogTool represents
cognitive activity associated with memory retrieval with a
1.2 second mental operator, while GRBIL uses the retrieval
mechanism of ACT-R to determine the timing of retrievals.

Conclusion
The project has so far demonstrated that even a complex
interface such as an OCU for robotic vehicles can be
duplicated by the GRBIL system without writing a line of
code. The creation of this interface requires only drag and
drop placement of controls and a menu-driven description of

functionality. The project has also shown the ability to
automatically generate cognitive models that perform
dynamic spatial reasoning. The creation of these models
requires only the demonstration of procedures and the
creation of monitors with a simple interface.

Future Work
The next step in our research is to validate the enhanced
GRBIL tool by collecting data on OCU tasks involving
spatial reasoning such as projected vehicle intersection. The
DRS theory implemented in ACT-R currently uses the
default ACT-R timing for movement of attention and object
recognition. The validation studies should indicate if further
visual processing time is needed to accomplish the DRS
routines.

Also, since GRBIL models retrieve procedure steps from
memory, it will be possible to use ACT-R's theory of
production compilation to predict the trajectory of learning
from error-prone retrieval to efficiently compressed
performance.

Acknowledgments
We would like to thank the Army Research Laboratory for
their funding of this effort and Bonnie John for her
comments.

Figure 5. Vehicle path intersection detectable by
DRS-enhanced models

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review 111, (4). 1036-1060.

Anderson, J. R. & Matessa, M. (1997). A production system
theory of serial memory. Psychological Review, 104 (4),
728-748.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-
R: A theory of higher level cognition and its relation to
visual attention. Human Computer Interaction, 12(4),
439-462.

Archer, S. G. & Adkins, R. “IMPRINT User’s Guide”
prepared for US Army Research Laboratory, Human
Research and Engineering Directorate, April 1999.

Archer, R. D., Lebiere, C., Warwick, W. (2005). Design and
Evaluation of Interfaces Using the GRaph-Based Interface
Language (GRBIL) Tool. ANSE Human Systems
Integration Symposium on “Enhancing Combat
Effectiveness Through Warfighter Performance”, June
20-22, 2005, Arlington VA.

Byrne, M. D., (2001). ACT-R/PM and menu selection:
Applying a cognitive architecture to HCI. International
Journal of Human-Computer Studies, 55, 41-84.

Card, S. K., Moran, T. P., & Newell, A. (1983). The
psychology of human-computer interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Chandrasekaran, B., & Kurup, U. (2007). Bimodal
Cognitive Architectures: Learning and Memory in Spatial
Reasoning. ARL Advanced Decision Architectures RMB
Meeting, February 21-23. Westminster, CO.

Chandrasekaran, B., Kurup, Banerjee, Josephson, &
Winkler (2004). An Architecture for Problem Solving
with Diagrams. In Diagrammatic Representation and
Inference, A. Blackwell, K. Marriott and A. Shomojima,
Eds., Lecture Notes in Artificial Intelligence 2980, Berlin:
Springer-Verlag, pp. 151-165.

Fleetwood, M., Lebiere, C., Archer, R., Mui, R., &
Gosakan, M. (2006). Putting the Brain in the Box for
Human-System Interface Evaluation. Proceedings of the
50th Annual Human Factors and Ergonomics Society
Meeting. Santa Monica, CA

Howes, A., Lewis, R. L., Vera, A., & Richardson, J. (2005).
Information-Requirements Grammar: A theory of the
structure of competence for interaction. In Proceedings of
the 27th Annual Meeting of the Cognitive Science
Society, 977-983. Hillsdale, NJ: Lawrence Erlbaum.

John, B. E. & Salvucci, D. D. (2005) Multi-Purpose
Prototypes for Assessing User Interfaces in Pervasive
Computing Systems. IEEE Pervasive Computing 4(4), 27-
34.

John, B., Prevas, K., Salvucci, D., & Koedinger, K. (2004)
Predictive Human Performance Modeling Made Easy.
Proceedings of CHI, 2004 (Vienna, Austria, April 24-29,
2004) ACM, New York.

Larkin, J.H. & Simon, H.A. (1987). Why a diagram is
(sometimes) worth ten thousand words. Cognitive
Science, 11, 65-99.

Lathrop, S., and Laird, J.E. (2006). Incorporating Visual
Imagery into a Cognitive Architecture: An Initial Theory,
Design and Implementation. University of Michigan
Technical Report CCA-TR-2006-01.

Matessa, M. & Brockett, A. (2007). Using a Diagram
Reasoning System with ACT-R. 16th Conference on
Behavior Representation in Modeling and Simulation.

Matessa, M., & Polson, P. (2006). List Models of Procedure
Learning. In Proceedings of the International Conference
on Human-Computer Interaction in Aeronautics (HCI-
Aero), San Francisco, CA.

Salvucci, D.D., & Lee, F. J. (2003). Simple cognitive
modeling in a complex cognitive architecture. In Human
Factors in Computing Systems: CHI 2003 Conference
Proceedings (pp. 265-272). New York: ACM Press.

St. Amant, R., & Ritter, F. E. (2005). Specifying ACT-R
models of user interaction with a GOMS language.
Cognitive Systems Research. 6(1) 71-88.

	Introduction
	ACT-R
	DRS
	Combining DRS and ACT-R
	GRBIL
	Robotic Interface Test Case
	Related Work
	Conclusion
	Future Work
	Acknowledgments
	References

