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Abstract

This  paper  describes  dynamic  and  spatial  reasoning 
enhancements  to  the  Graph-Based  Interface  Language  tool 
(GRBIL), which creates ACT-R models by demonstration. A 
new ability for users to create monitors  enables procedures to 
be dynamically triggered. A new integration of ACT-R with a 
diagrammatic  reasoning  theory  allows  ACT-R  to  perform 
spatial reasoning. Capabilities of the tool are demonstrated in 
a robotic control task.

Introduction
Cognitive modeling can add value to interface evaluation, 
but it is currently not very practical in terms of amount of 
expertise  and  time.  Recent  efforts  to  allow  easier 
construction  of  cognitive  models  have  utilized  high  level 
languages  (Howes,  Lewis,  Vera,  &  Richardson,  2005; 
Salvucci  &  Lee,  2003;  St.  Amant  &  Ritter,  2005)  and 
modeling by demonstration (Archer, Lebiere, & Warwick, 
2005;  John,  Prevas,  Salvucci,  &  Koedinger,  2004). 
Modeling  by  demonstration  is  an  easy  way  to  create  a 
sequence of procedural steps, but with dynamic interfaces, 
an additional method is needed to designate the condition in 
which the procedure should be applied. In addition, many 
real-world tasks require aspects of spatial reasoning as well 
as dynamic interaction.  Examples of interfaces with these 
features include radar operator interfaces and interfaces for 
controlling robotic vehicles. This paper describes dynamic 
and  spatial  reasoning  enhancements  to  the  GRaph-Based 
Interface  Language  tool  (GRBIL  –  Archer,  Lebiere,  & 
Warwick,  2005),  which  creates  ACT-R  models  by 
demonstration.  A new ability for users to create monitors 
enables  procedures  to  be  dynamically  triggered.  A  new 
integration of ACT-R with a diagrammatic reasoning theory 
allows ACT-R to perform spatial reasoning. 

ACT-R
The ACT-R cognitive architecture has shown an increasing 
ability to account for human visual information processing. 
Early  ACT-R  accounts  of  visual  processing  made  a 
distinction between pre-attentive features available to vision 
and objects  available after  a  shift  of  attention (Anderson, 
Matessa,  & Lebiere,  1997).  More  recent  work uses  brain 
imaging  as  evidence  for  an  Imaginal  module  where 
information can be visualized and manipulated (Anderson et 

al., 2004). However, current ACT-R theory is limited in the 
visual objects that can be recognized (text, lines, rectangles, 
and  ovals)  and  does  not  provide  primitive  operators  for 
getting  attribute  information  such  as  length,  relational 
information such as what objects are inside or next to other 
objects, inferred information such as projected intersections, 
and  transformations  on  objects  such  as  rotation.  One 
solution  to  these  limitations  is  to  integrate  a  spatial 
reasoning  theory  into  ACT-R.  For  interface  evaluation, 
diagrams are a useful level of representation for reasoning. 
Larkin  and  Simon  (1987)  point  out  that  diagrams 
automatically  support  a  large  number  of  perceptual 
inferences  which  are  extremely easy for  humans  but  that 
“...diagrams  are  useful  only  to  those  who  know  the 
appropriate computational processes for taking advantage of 
them.” 

DRS
Chandrasekaran et  al.  (2004)  developed the diagrammatic 
reasoning  theory  DRS,  which  consists  of  a  basic  set  of 
primitive objects,  information gathering capabilities  called 
Perceptual  Routines,  and  creation/modification  operations 
called Action Routines. A diagrammatic object can be one 
of  three  types:  point,  curve,  and  region.  Figure  1  shows 
examples of object types and how they can be composed 
hierarchically. Perceptual Routines can be qualitative (e.g., 
LeftOf,  On,  InsideOf),  quantitative (e.g.,  Distance,  Angle, 
Length),  or  related  to  object  recognition  (e.g.,  ScanPath, 
Intersect).  Action  Routines  can  create  or  modify  objects 
(e.g., Translate, Rotate, PathFinder).

Figure 1: DRS object types



Figure 2: DRS routines in the ACT-R architecture

Chandrasekaran and Kurup (2007) incorporated DRS into 
Soar  and  used  its  chunking  mechanism to  learn  efficient 
abstractions  of  observed  visual  material.  The  abstractions 
led to beneficial simplification in the case of memory of a 
specific  path  in  a  complex  environment,  and  also  led  to 
incorrect but psychologically realistic reasoning in the case 
of determining whether Reno is east or west of San Diego 
(it is actually west). Lathrop and Laird (2006) incorporated 
a diagrammatic reasoning theory motivated by DRS into the 
Soar  cognitive  architecture  and  found  an  increase  in 
functional capability and increase in efficiency of code as 
measured by number of decision cycles. 

Combining DRS and ACT-R
Matessa and Brockett  (2007) describe  how the perceptual 
capabilities of ACT-R can be enhanced by the addition of 
DRS.  Figure  2  shows  where  DRS  routine  types  can 
naturally fit  in  the ACT-R architecture.  One unnatural  fit 
would  be  for  qualitative  routines  to  put  all  relational 
information  (e.g.,  Region4  is  above  Region5)  in  the 
declarative  module,  which  would  cause  a  combinatorial 
explosion of facts. More naturally, qualitative routines can 
constrain  locations  returned  by  the  visual  module.  For 
example,  DRS  could  return  the  location  of  some  object 
InsideOf  a  particular  object.  Quantitative  routines  can 
associate  information  with  visual  objects  returned  by  the 
visual  module.  For  example,  DRS  could  associate  the 
Length  of  a  line  with  the  returned  visual  object.  Object 
recognition  routines  can  return  objects  that  are  either 
literally  in  the  display  or  implied  by  the  display.  For 
example,  DRS  could  infer  the  projected  line  from  a 
specified object to the nearest Intersecting object and return 
it  to  the  imaginal  module.  Action  routines  can  create  or 
modify objects stored in the imaginal module. For example, 
DRS  could  Rotate  an  object  in  the  imaginal  module  45 
degrees clockwise. To demonstrate these concepts, a model 
of maze navigation was created where the decision to move 
ahead or turn was based on the length of a projected line to 
the nearest intersecting wall. Without the integrated DRS, 
an ACT-R model would be forced to do maze navigation 
using  mental  arithmetic  on  coordinates  instead  of  using 
more natural representations of intersection and line length.

In order to use DRS-enhanced ACT-R models to evaluate 
dynamic  interfaces,  the  code  from  Matessa  and  Brockett 
(2007) was integrated into the GRBIL evaluation tool.

GRBIL
The  goal  of  developing  the  GRaph-Based  Interface 
Language  tool  (GRBIL)  is  to  allow  developers  to  easily 
design and evaluate system interfaces.  The system allows 
the  user  to  graphically  define  a  system  interface, 
demonstrate a set of procedures for using the interface, and 
automatically  generate  an  ACT-R  model  of  an  interface 
operator,  providing  a  time-stamped  series  of  events  and 
potential  errors.  In  addition,  the  system  allows  the 
incorporation  of  dynamic  models  of  the  external  world 
using  a  task  network  modeling  environment  named 
IMPRINT  (IMProved Research INTegration Tool – Archer 
& Adkins, 1999).  This enables  the evaluation of interfaces 
that  involve  continually  changing  environments.  Multiple 
IMPRINT tasks can run independently,  and with multiple 
machines,  multiple  ACT-R  agents  can  interact  with 
IMPRINT  in a common environment.

 The first step in constructing an interface in GRBIL is to 
design the physical  layout  of  the  interface.  This  involves 
choosing the windows, subwindows, and interface controls 
that comprise the interface. This is done in a similar fashion 
to  many  modern  interface  layout  applications  using 
WYSIWYG drag and drop functionality. Once a control is 
added to a window, attributes such as size and background 
image may then be customized further from a menu. The 
second  step  in  designing  an  interface  is  to  provide  a 
description of what actions each control will be capable of 
and what the desired effect of each action will be. This is 
done  for  each  control  in  GRBIL  via  an  “Event  Actions” 
menu  for  each  control.  Using  this  process  of  adding 
interface windows, placing controls on those interfaces and 
then describing the effects  of  using those controls  on the 
state  of  the  interface,  a  GRBIL  user  can  describe  the 
functionality of an entire user interface. 
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Figure 3: GRBIL monitor used to define a condition of procedure execution

The next step in setting up an interface for evaluation is to 
define the procedures that a user of the system might wish 
to perform. This is accomplished by demonstrating a series 
of  actions  (e.g.,  button  clicks,  object  movement).  The 
recorded series  of  actions  is  referred  to  as  a  “goal  state” 
procedure in the GRBIL terminology. Any number of goal 
state  procedures  can  be  demonstrated  and saved for  later 
execution by an ACT-R model. In the model, action steps 
are represented as  a  list  that  is  retrieved from declarative 
memory,  and  so  can  be  used  to  predict  errors  that  are 
dependent on sequence length and positional confusion (cf. 
Anderson  &  Matessa,  1997;  Matessa  &  Polson,  2006). 
Model tracing is used so that potential errors are only noted 
in the output while the correct retrievals are actually made 
so the model runs correctly.

Once goal state procedures are defined, monitors can be 
created that designate the condition in which the procedure 
should  apply.  There  are  two  types  of  monitors:  object 
monitors  that  check  the  status  of  an  interface  object  and 
spatial  monitors  that  use  DRS  to  check  the  status  of 
graphical  objects.  Figure  3  shows  the  interface  used  to 
create monitors. A monitor control is either the name of an 
interface  object,  name  of  a  graphical  object  or  names  o 
multiple  graphical-objects.  An  attribute  to  monitor  is  an 
attribute of an interface object defined in GRBIL or a DRS 
routine  for  a  graphical  object.  An  attribute  trigger  value 
must match the value of an attribute before the given goal 
state procedure can be executed.  Any number of monitors 
can be  demonstrated  and saved for  later  execution  by an 
ACT-R model

At  run  time,  goal  state  procedures  and  monitors  are 
chosen  and  ordered.  An  ACT-R  model  is  created  that 
performs executes  the procedures in the given order.  The 
action steps of a goal state procedure are performed without 
interruption.  Between  goal  state  procedures,  the  model 
evaluates  the  next  unmatched  monitor,  using  necessary 
shifts  of  attention.  If  the monitor  matches,  the  goal  state 
procedure for that monitor is executed. 

Output from the model run includes a time-stamped series 
of events and possible memory errors (failures to retrieve or 
the retrieval of similar but incorrect chunks).

Robotic Interface Test Case
In order to test the capabilities of ACT-R models generated 
with GRBIL, an interface for an unmanned vehicle Operator 
Control Unit (OCU) was selected (Figure 4).  The OCU is 
used by operators to control unmanned vehicles in the field. 
Operators  set  up  plans  for  the  vehicles  which  are  then 
executed independently. Operators are also responsible for 
monitoring the status of the vehicles. The interface for the 
OCU is quite complex, with several modes of operation and 
control menus.  In our implementation, ACT-R performed 
the actions of operator agents and IMPRINT performed the 
actions  of  unmanned  vehicle  agents.  Multiple  IMPRINT 
vehicle  agents  can  run  independently,  and  with  multiple 
machines, multiple ACT-R operator agents can interact with 
the  IMPRINT  vehicle  agents  in  a  common  environment. 
The ACT-R operators are able to monitor specific attribute 
values in the environment (such as text describing the status 
of a vehicle) and use DRS spatial reasoning to detect more 
general  conditions  such  as  projected  vehicle  intersection 
(Figure  5).  For  a  particular  set  of  procedures,  interacting 
models of multiple operators (one setting up and initiating 
vehicles,  one  monitoring)  predict  improved  performance 
over a model of  a single operator.  This is  a result  of  the 
ability of the purely monitoring operator to react at the same 
time the single operator would be busy with a procedure.

In  order  to  validate  the  model’s  predictions  of  errors, 
latencies, and other performance measures, the project team 
has  begun  to  collect  performance  data  from  human 
operators  performing  interface  tasks  such  as  mission 
planning  and  execution  on  the  actual  Robotic  OCU. 
Fleetwood  et  al.  (2006)  report  that  timing  predictions  of 
tasks  not  involving  spatial  reasoning  generally  match 
preliminary data. 



Figure 4: GRBIL tool viewing the Operator Control Unit interface

Related Work
Tools  that  enable  modeling  by  demonstration,  such  as 
CogTool  (John  et  al.,  2004),  solve  some  affordability 
problems.  However,  they  offer  no  standard  solution  for 
spatial reasoning or integration with dynamic environments. 
As of this writing, visual processing in CogTool is limited 
to  scripted  attention  movement  to  interface  objects.  The 
environment  can  not  be  monitored  to  detect  a  change. 
CogTool  simulates  the  environment  with  a  storyboard  of 
static frames and transitions between these frames triggered 
by user  actions,  not  a dynamic  environment.  Under some 
circumstances,  CogTool  storyboards  could  be  combined 
with dynamic  simulations (e.g.,  driving) with some hand-
coded modifications.

In addition, CogTool currently produces Keystroke-Level 
Models  (Card,  Moran,  &  Newell,  1983)  implemented  in 
ACT-R,  while  GRBL produces  more direct  ACT-R code. 
An example of  this  difference is  that  CogTool  represents 
cognitive activity associated with memory retrieval with a 
1.2 second mental operator, while GRBIL uses the retrieval 
mechanism of ACT-R to determine the timing of retrievals.

Conclusion
The project  has so far demonstrated that  even a complex 
interface  such  as  an  OCU  for  robotic  vehicles  can  be 
duplicated by the GRBIL system without writing a line of 
code. The creation of this interface requires only drag and 
drop placement of controls and a menu-driven description of 

functionality.  The  project  has  also  shown the  ability  to 
automatically  generate  cognitive  models  that  perform 
dynamic  spatial  reasoning.  The  creation  of  these  models 
requires  only  the  demonstration  of  procedures  and  the 
creation of monitors with a simple interface.  

Future Work
The next step in our research is  to validate the enhanced 
GRBIL  tool  by  collecting  data  on  OCU  tasks  involving 
spatial reasoning such as projected vehicle intersection. The 
DRS  theory  implemented  in  ACT-R  currently  uses  the 
default ACT-R timing for movement of attention and object 
recognition. The validation studies should indicate if further 
visual  processing  time  is  needed  to  accomplish  the  DRS 
routines.

Also, since GRBIL models retrieve procedure steps from 
memory,  it  will  be  possible  to  use  ACT-R's  theory  of 
production compilation to predict the trajectory of learning 
from  error-prone  retrieval  to  efficiently  compressed 
performance.
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Figure 5. Vehicle path intersection detectable by 
DRS-enhanced models
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